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1 Introduction

The light-cone gauge has always occupied at special role in the description of
hard processes at high energy. It belongs to a class of physical gauges in which
many of the precepts of the QCD parton model are true, because in this gauge
collinear divergences occur in diagrams corresponding to the parton cascade. We
thus retain the probabilistic interpretation of a hard scattering event, which is
obscured in covariant gauges. In fact, by introducing an additional gauge vector
we obtain many of the advantages of an in�nite momentum frame formulation
in a covariant notation.

However, doubts have been raised about the utility of light-cone gauge in
practical calculations[1,2]. One refutation of these misgivings is provided by the
classic calculation of the two loop splitting functions or anomalous dimensions
as given by Curci, Furmanski and Petronzio[3] for the non-singlet case and the
calculation of Furmanski and Petronzio[4] for the singlet case. The calculation of
ref. [4], however, has never been fully documented. It could be be that this lack
of complete documentation has acted as a barrier to further developments along
this line. One example of a further application of this method is the calculation
of the polarized two loop splitting functions, recently presented in ref. [7]. It
therefore seemed a valuable addition to the literature to provide a more complete
description of the calculation of the singlet evolution probabilities. This is the
modest aim of this paper.

In our calculation n is a light-like vector which serves to de�ne the longitudi-
nal direction. The momentum of the incoming parton (taken to be massless) is
denoted by p. Thus we have two light-like vectors which are de�ned such that,

n2 = p2 = 0; n � p � pn 6= 0; n � t = p � t = 0 ; (1)

where t is any vector in the transverse plane. In addition to specifying the
longitudinal direction we also use the vector n to �x the light-cone gauge:

n �A = 0 : (2)

Following reference [3] we use the principal value (PV) prescription to regulate
the divergences which occur in the light-cone gauge propagator in loop and
phase space integrals, i.e.

1

n � k
!

1

2

 
1

n � k + iÆ(pn)
+

1

n � k � iÆ(pn)

!
=

n � k

(n � k)2 + Æ2(pn)2
: (3)

This prescription is at variance with the Mandelstam-Leibrandt (ML) treat-
ment of the 1=(n �k) singularities[5,1]. The ML prescription, since it permits the
Wick rotation in virtual diagrams, leads to power counting rules and a proof of
renormalizability of the theory in this gauge. Indeed the one loop non-singlet
splitting function has been investigated in this gauge[6]. We have chosen not
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to follow the ML prescription. The technical reason is that it leads to a prolif-
eration of graphs, because of ghost-like contributions associated with the n � k
propagator[6]. The physical reason is that we wanted to stay as close as possi-
ble to old-fashioned perturbation theory in which manifest Lorentz covariance is
sacri�ced in order to have a simple form for unitarity. The advantage of Eq. (3)
is that the unitarity of the theory is explicit. In this way we hoped to gain a
greater physical understanding of the two loop anomalous dimensions. It would
be interesting to repeat the calculation of the two loop anomalous dimensions
using the ML prescription.

Of course, the calculation of any gauge invariant quantity such as the two
loop splitting function is independent of the gauge in which the calculation is
performed and of the method of calculation. However, the discovery of compli-
cations in the covariant gauge calculations[8,9] makes the method outlined in
ref. [10] and implemented in refs. [3,4] even more attractive. Not only is this
method close to the parton model, but it also leads to compact answers and
may be the most eÆcient method from a calculational point of view. It might
present a viable method for the analytic calculation of the three loop splitting
functions2.

2 Calculation of anomalous dimensions

2.1 Factorization

In this section we shall explain the method of factorization of the two-particle
irreducible (2PI) diagram in the light-cone gauge. It is not our intention to
repeat the discussion which is clearly provided in ref. [3]. We only include those
details which are necessary to present the structure of the calculation or to
de�ne the notation. Following ref. [10] we de�ne a generalized ladder expansion
by introducing the 2PI kernel K0:

M = C0(1 +K0 +K2
0 +K3

0 + : : :) �
C0

1�K0
: (4)

Factorization occurs by introducing the projector onto physical states, P,

1

1�K0
=

1

1� (1� P)K0 � PK0

�

�
1

1� (1� P)K0

��
1

1�PK0

�
1� (1� P)K0

��1
�
: (5)

De�ning the modi�ed kernel K,

K =
K0

1� (1�P)K0
; (6)

2Results for low moments of the three loop splitting functions are given in Ref. [11]
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we can thus write M as

M = C0
1

1� (1�P)K0

1

1� PK

� C � (7)

where

C = C0
1

1� (1 �P)K0
; (8)

� =
1

1�PK
: (9)

At this stage the factorized structure becomes apparent. In the light-cone gauge
the 2PI kernels K0 are �nite before the integration over the sides of the ladder
is performed. Collinear singularities appear only after integrating over the lines
connecting the rungs of the ladders[10]. All collinear singularities are contained
in �, whereas C is interpreted as the (�nite) short distance cross section. Re-
expanding we �nd that

K = K0 (1 + (1�P)K0 + (1� P)(K0(1� P)K0) + : : :) ; (10)

� = 1 + PK + (PK)(PK) + : : :

� 1 + PK0 + PK0(1� P)K0 + (PK0)(PK0) + : : : (11)

Restoring the indices and regulating collinear singularities by going to d = 4�2�
dimensions we have that

�ij = Zj

1

1� PK
= Zj

"
1 + PK0 + P(K

2
0 ) �P(K0PK0) + : : :

#
(12)

and explicitly

�ij(z; �s;
1

�
) = Zj

"
Æ(1�z)Æij+z PP

Z
ddk

(2�)d
Æ(z�

n � k

pn
)UiK

1

1� PK
Lj

#
(13)

where `PP' extracts the pole part of the expression on its right and Zj (j = q(g))
is the residue of the pole of the full quark (gluon) propagator, contributing to the
diagonal splitting functions. Furthermore the spin averaged projection operators
onto physical states are given by,

Uq =
1

4n � k
6n; Lq = 6p

Ug = �g�� ; Lg =
1

d� 2

"
� g�� +

n�p� + n�p�

pn

#
: (14)
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2.2 Derivation of GLAP equation

The property of factorization allows us to separate the low momentum physics
from the high momentum physics in a multiplicative way. This separation is
performed at a scale �, which is completely arbitrary, and no physical prediction
can depend on it. In this section we investigate the constraints provided by this
condition. For simplicity, we will consider a non-singlet cross section which can
only be initiated by a quark. We therefore have the factorized result,

�(
Q2

�2
; �S(�

2); �) = ~�q(
Q2

�2
; �S(�

2)) 
 �qq(�S(�
2); �) (15)

where we have indicated that �qq does not depend on Q2 (i.e. Q2=�2), which is
a consequence[3] of the �niteness of the kernel K0 in the light-cone gauge. The
symbol
 indicates a convolution integral over longitudinal momentum fractions
of the type

f 
 g �

Z 1

0

dy dz f(y)g(z) Æ(x� yz) : (16)

If we take moments,

f(j) =

Z 1

0

dxxj�1f(x) (17)

on both sides of Eq. (15), it reduces to a simple product:

�(j;
Q2

�2
; �S(�

2); �) = ~�q(j;
Q2

�2
; �S(�

2))�qq(j; �S(�
2); �) : (18)

~�q is the short distance cross section from which all singularities have been
factorized. �qq contains the mass singularities which manifest themselves as
poles in �. The independence of the full cross section of � implies that

d

d ln�2
� = 0 (19)

and hence that

d

d ln�2
ln�qq(j; �S(�

2); �) = �
d

d ln�2
ln ~�q(j;

Q2

�2
; �S(�

2)) = qq(j; �S(�
2)) :

(20)
The function qq is known as the anomalous dimension, because it measures the
deviation of ~�q from its naive scaling dimension. It must be �nite and can only
depend on �S(�

2) because these are the only variables common to both �qq and
~�q. The anomalous dimension is extracted from Eq. (20) in the following way:
Because the � dependence of �qq enters only through the running coupling we
have that,

qq(j; �S(�
2)) � �(�S ; �)

d

d�S
ln�qq(j; �S(�

2); �) ; (21)
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where �(�S ; �) is the d-dimensional QCD � function in the MS scheme,

�(�S ; �) =
d�S
d ln�2

= ���S + �(�S ) : (22)

In the MS scheme �qq is given by a series of the form

�qq(j; �S ; �) = 1 +
1X
i=1

�
(i)
qq (j; �S)

�i
: (23)

Comparing the coeÆcient of the term of order �0 we �nd that

qq(j; �S) = �
d

d ln�S
�(1)qq (j; �S) : (24)

Integrating Eqs. (20,21) one obtains

�qq(j; �S; �) = exp

(Z �S

0
d�

qq(j; �)

�(�) � ��

)
(25)

and

�(j;
Q2

�2
; �S(�

2); �) = ~�q(j; 1; �S(Q
2)) exp

(Z �S(Q
2)

0

d�
qq(j; �)

�(�) � ��

)
(26)

with the running coupling �S(Q
2). In order to obtain the hadronic cross section,

�(Q2=�2; �S; �) has to be convoluted with `bare' (`unrenormalized') quark den-
sities ~q(�S ; �) which contain mass singularities that must exactly cancel those
in �qq. The resulting `dressed' (`renormalized') quark distribution function

q(j;Q2) = exp

(Z �S(Q
2)

0

d�
qq(j; �)

�(�) � ��

)
~q(j; �S(�

2); �) (27)

is free of mass singularities and satis�es the non-singlet evolution equation

dq(j;Q2)

d lnQ2
= qq(j; �S(Q

2))q(j;Q2) (28)

which, de�ning Z 1

0

dzzj�1Pqq(z; �S) � qq(j; �S) ; (29)

in x space takes the form of the GLAP equation[12,13]:

dq(x;Q2)

d lnQ2
=

Z 1

0

dy

Z 1

0

dz Pqq(y; �S(Q
2))q(z;Q2) Æ(x � yz) : (30)
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Expanding

Pqq(x; �S) =
��S
2�

�
P (0)
qq (x) +

��S
2�

�2
P (1)
qq (x) + : : : (31)

one has

�qq(x; �S; �) = Æ(1�x)�
1

�

 
�S
2�

P (0)
qq (x)+

1

2

��S
2�

�2
P (1)
qq (x)+ : : :

!
+O

�
1

�2

�
:

(32)
The generalization to the singlet case is straightforward.

2.3 Non-singlet and singlet equations

The separation into singlet and non-singlet parts depends on the properties of
the kernel. Using SU (f) avour symmetry we may de�ne the following combi-
nations of qq and q�q matrix elements:

Pqiqk = ÆikP
V
qq + PS

qq

Pqi�qk = ÆikP
V
q�q + PS

q�q

P� = PV
qq � PV

q�q : (33)

In addition, because of charge conjugation invariance, we have that

Pqiqj = P�qi�qj

Pqi�qj = P�qiqj

Pqig = P�qig

Pgqi = Pg�qi : (34)

At two loop order, there is a non-zero contribution from PS
qq and PS

q�q, but
we have the additional relation

PS
qq = PS

q�q : (35)

which simpli�es the treatment of the non-singlet pieces.
For each avour we de�ne the sum and di�erence of the quark and anti-quark

distributions as
q�i = qi � �qi : (36)

One then �nds that the combinations

Vi = q�i (37)

and

Tl =
kX

i=1

q+i � kq+k (38)
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(where i; k = 1; : : : ; nf ; l = k2 � 1) are non-singlets, i.e., evolve according to
Eq. (30) with the kernels P� and P+, respectively.

The singlet Altarelli-Parisi equation is3[12,13]

d

d lnQ2

�
�(j;Q2)
G(j;Q2)

�
=

�
Pqq(j; �S(Q2)) Pqg(j; �S(Q2))
Pgq(j; �S(Q2)) Pgg(j; �S(Q2))

��
�(j;Q2)
G(j;Q2)

�
(39)

where G(j) is the moment of the gluon distribution and �(j) is the singlet quark
combination,

�(j;Q2) =
X
f

q+i (j;Q
2) �

X
f

�
qi(j;Q

2) + �qi(j;Q
2)
�
: (40)

The elements of the anomalous dimension matrix are given in terms of the
kernels de�ned in Eqs. (33-35) as,

Pqq = P+ + nf (P
S
qq + PS

q�q)

Pqg = 2nfPqig

Pgq = Pgqi : (41)

2.4 Renormalization constants

The notation for the renormalization constants is shown in Fig. 1. We de�ne
the integral

I0 =

Z 1

0

du
u

u2 + Æ2
(42)

which contains the divergences in the PV regulator Æ (see Eq. (3)) arising from
the light-cone gauge propagator. As already noted in ref. [3], use of the PV
prescription (3) in the light-cone gauge entails the disagreeable feature that the
renormalization constants depend on the longitudinal momentum fractions x.

Zq(x) = 1 +
�S
2�

1

2�

"
CF (�3 + 4I0 + 4 lnx)

#

Zg(x) = 1 +
�S
2�

1

2�

"
4Tf
3

+ NC(�
11

3
+ 4I0 + 4 lnx)

#

Z(1)
q (x1; x2; x3) = 1 +

�S
2�

1

2�

"
CF (3� 4I0 � 2 lnx1 � 2 lnx2)� 2NC(I0 + lnx3)

#

Z(1)
g (x1; x2; x3) = 1 +

�S
2�

1

2�

"
NC(

11

3
� 6I0 � 2 lnx1 � 2 lnx2 � 2 lnx3)�

4Tf
3

#

(43)
3Note that the notation for the o�-diagonal terms is di�erent than in ref. [4].
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Figure 1: Renormalization constants and the vertices which they renormalize

where

CF =
4

3
; NC = 3; Tf = TRnf = 1

2
nf : (44)

When combined in the appropriate combinations to investigate the renormaliza-
tion of the charge, the momentum dependent terms and the divergent integrals
I0 cancel. Thus the relationship between the bare and renormalized couplings
is

�
(0)
S

= �S�
2�Z(1)

q (x1; x2; x3)
q
Zq(x1)Zq(x2)Zg(x3)

= �S�
2�Z(1)

g (x1; x2; x3)
q
Zg(x1)Zg(x2)Zg(x3) (45)

= �S�
2�
h
1�

�S
2�

1

2�
(
11NC

6
�

2Tf
3

) + : : :
i
� �S�

2�
h
1�

�S
2�

1

4�
�0 + : : :

i
:

2.5 Topologies of NLO graphs

The basic topologies of all 2PI diagrams which occur in two loops are shown
in Fig. 2. The notation of the topologies (b)-(i) is determined by the labelling
of the diagrams for the non-singlet calculation given in ref. [3]. We have not
included diagrams which can be obtained by reection about the vertical axis
which occur in cases (c),(d),(e) and (j). Topologies (hi) correspond to the terms
P(K2

0 ) � P(K0PK0) in Eq. (12), all other topologies belong to PK0. As an

8



example, the diagrams corresponding to PV
qq are given explicitly in Fig. 3. Fig. 4

shows the diagrams for P V
q�q (b) and for PS

q�q (h,i). The appendices give the
necessary ingredients needed for the evaluation of the real and virtual graphs in
Fig. 2.

Figure 2: Basic topologies of the diagrams

3 Results

As in Eq. (31) we de�ne the perturbative expansion

Pij(x; �S) =
��S
2�

�
P
(0)
ij (x) +

��S
2�

�2
P
(1)
ij (x) + : : : (46)

The full one loop results are included for completeness[12]

P (0)
qq (x) = CF

n 2

[1� x]+
� 1� x+

3

2
Æ(1� x)

o
(47)

P (0)
qg (x) = 2Tf

n
x2 + (1� x)2

o
(48)

P (0)
gq (x) = CF

n1 + (1� x)2

x

o
(49)

P (0)
gg (x) = 2NC

n 1

[1� x]+
+

1

x
� 2 + x(1� x)

o
+
�0
2
Æ(1 � x) : (50)

9



Figure 3: Diagrams for the qq part of the NLO non-singlet splitting functions

In order to write the full result for the two loop splitting functions P (1)
ij we

introduce the notation

pqq(x) =
2

1� x
� 1� x (51)

pqg(x) = x2 + (1� x)2 (52)

pgq(x) =
1 + (1� x)2

x
(53)

pgg(x) =
1

1� x
+

1

x
� 2 + x(1� x) : (54)

Figure 4: The q�q diagrams
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CFTR

Terms (hi)

x ln2(x) -1

ln2(x) -1

x2 ln(x) 8/3

x ln(x) 5

ln(x) 1

x2 -56/9

x 6

1 -2

1=x 20/9

Table 1: Results for the q�q-Singlet diagram

The graph-by-graph results are given in Tables 1-4, where we only list the
contributions to the singlet splitting functions since those for the non-singlet
case have been presented in a similar table in ref. [3]. Our �nal full results
for the two loop non-singlet splitting functions read for x 6= 1 [3]:

PV;(1)
qq = C2

F

n
�
�
2 lnx ln(1� x) +

3

2
lnx
�
pqq(x)

�(
3

2
+

7

2
x) lnx�

1

2
(1 + x) ln2 x� 5(1� x)

o
+CFNC

n�1
2
ln2 x+

11

6
lnx+

67

18
�
�2

6

�
pqq(x) + (1 + x) lnx+

20

3
(1� x)

o
+CFTf

n
�
�2
3
lnx+

10

9

�
pqq(x)�

4

3
(1� x))

o
(55)

P
V;(1)
q�q = CF (CF �

NC

2
)
n
2pqq(�x)S2(x) + 2(1 + x) lnx+ 4(1� x)

o
: (56)

Our results for the singlet terms are[4],

P (1)
qq = P+;(1) (57)

+2CFTf

n20
9x

� 2 + 6x�
56

9
x2 + (1 + 5x+

8

3
x2) lnx� (1 + x) ln2 x

o

P (1)
qg = CFTf

n
4� 9x� (1� 4x) lnx� (1 � 2x) ln2 x+ 4 ln(1 � x)

+
�
2 ln2

�1� x

x

�
� 4 ln

�1� x

x

�
�

2

3
�2 + 10

�
pqg(x)

o

11



+NCTf

n182
9

+
14

9
x+

40

9x
+ (

136

3
x�

38

3
) lnx� 4 ln(1� x)� (2 + 8x) ln2 x

+
�
� ln2 x+

44

3
lnx� 2 ln2(1� x) + 4 ln(1� x) +

�2

3
�

218

9

�
pqg(x)

+2pqg(�x)S2(x)
o

(58)

P (1)
gq = C2

F

n
�

5

2
�

7

2
x+ (2 +

7

2
x) lnx� (1�

1

2
x) ln2 x� 2x ln(1� x)

�
�
3 ln(1 � x) + ln2(1� x)

�
pgq(x)

o
+CFNC

n28
9

+
65

18
x+

44

9
x2 � (12 + 5x+

8

3
x2) lnx+ (4 + x) ln2 x+ 2x ln(1 � x)

+
�
� 2 lnx ln(1� x) +

1

2
ln2 x+

11

3
ln(1� x) + ln2(1� x)�

�2

6
+

1

2

�
pgq(x)

+S2(x)pgq(�x)
o

+CFTf

n
�

4

3
x�

�20
9
+

4

3
ln(1� x)

�
pgq(x)

o
(59)

P (1)
gg = CFTf

n
� 16 + 8x+

20

3
x2 +

4

3x
� (6 + 10x) lnx� 2(1 + x) ln2 x

o
+NCTf

n
2� 2x+

26

9
(x2 �

1

x
)�

4

3
(1 + x) lnx�

20

9
pgg(x)

o
+N2

C

n27
2
(1� x) +

67

9
(x2 �

1

x
) � (

25

3
�

11

3
x+

44

3
x2) lnx+ 4(1 + x) ln2 x

+
�67
9
� 4 lnx ln(1� x) + ln2 x�

�2

3

�
pgg(x) + 2pgg(�x)S2(x))

o
(60)

where the function S2(x) is de�ned as4

S2(x) =

Z 1
1+x

x
1+x

dz

z
ln
�1� z

z

�
: (61)

In the small-x limit S2 becomes

S2 =
1

2
ln2 x�

�2

6
+ O(x) : (62)

All results in Eqs. (55-60) are in complete agreement with the corresponding
results in [3,4]. They can be extended to all values of x using a trick to evaluate
the endpoint contributions in Eqs. (55,60). The sum rule from the conservation
of fermion number isZ 1

0

dx
�
Pqq(x)� Pq�q(x)

�
�

Z 1

0

dx P�(x) = 0 : (63)

4Note that the de�nition of S2 in ref. [4] contains a typographical mistake.
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The conservation of momentum leads to the following two relations,Z 1

0

dx x
�
Pqq(x) + Pgq(x)

�
= 0 ; (64)

Z 1

0

dx x
�
Pqg(x) + Pgg(x)

�
= 0 : (65)

These results for the integrals of the splitting functions are satis�ed if one makes
the substitutions

1

1� x
!

1

[1� x]+
(66)

in Eqs. (51,54) and adds in the end-point contributions to Eqs. (55,60) [14],

PV;(1)
qq ! PV;(1)

qq +

"
C2
F

n3
8
�
�2

2
+ 6�(3)

o
+CFNC

n17
24

+
11�2

18
� 3�(3)

o

�CFTf

n1
6
+

2�2

9

o#
Æ(1� x) (67)

P (1)
gg ! P (1)

gg +

"
N2
C

n8
3
+ 3�(3)

o
� CFTf �

4

3
NCTf

#
Æ(1� x) (68)

where �(3) � 1:202057. The substitution in Eq. (66) is obviously not necessary
if the factor of 1=(1�x) has a coeÆcient which vanishes at x = 1, such as ln(x).
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4 Summary

This paper has presented a recalculation of the two loop anomalous dimension
for space-like processes. The results given in this paper are therefore not new.
The new features are the presentation of the results in a coherent notation, the
description of some of the integrals which are required to derive the results and
a detailed description of the contributions of the sub-diagrams to the results.

A Virtual Integrals

A.1 Two point function

The evaluation of the virtual integrals involving non-covariant denominators of
the form 1=(n � k) requires some care. We de�ne

l+ = n � l

l� = p � l

ddl = dl+dl�d
d�2l? : (A.1)

We shall evaluate the integrals by explicitly performing the integrals over l�; l?
keeping l+ �xed. This formulation will be useful when f(l+) contains poles in
1=l+ coming from non-covariant denominators as long as the method used to
regulate the l+ singularity does not involve l�. The general two-point function
then reads Z

ddl

(2�)d
f(l+)

(l2 + i")((l � k)2 + i")

=
i

16�2

�
4�

�k2

��
�(1 + �)

�

Z 1

0

dz f(l+) z
��(1� z)�� (A.2)

where f is an arbitrary function, d = 4� 2� and z = l+=k+ the boost invariant
rescaled value of l+. If f(l+) = 1 we recover the normal covariant result,

J2 �

Z
ddl

(2�)d
1

(l2 + i")((l � k)2 + i")
=

i

16�2

�
4�

�k2

��
�(1 + �)�2(1 � �)

�(2� 2�)

1

�
:

(A.3)
The result for the integral with one non-covariant denominator is

J2;n �

Z
ddl

(2�)d
PV

 
k+

l+ � k+

!
1

(l2 + i")((l � k)2 + i")

=
i

16�2

�
4�

�k2

��
�(1 + �)�2(1� �)

�(1� 2�)

(
�
I0 + lnx

�

�I0 lnx+ I1 �
1

2
ln2 x�

�2

6
+O(�)

)
(A.4)
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where x = n � k=pn and we have indicated that the PV prescription de�ned by
Eq. (3) has been used. I0 is de�ned as in Eq. (42); in the small-Æ limit it reduces
to

I0 =

Z 1

0

du
u

u2 + Æ2
� � ln jÆj : (A.5)

Furthermore,

I1 =

Z 1

0

du
u lnu

u2 + Æ2
� �

1

2
ln2 jÆj �

�2

24
: (A.6)

For the case without an endpoint singularity in the integral over the plus
component we may take the limit Æ ! 0 and hence obtain,Z

ddl

(2�)d
k+

l+ � p+

1

(l2 + i")((l � k)2 + i")

=
i

16�2

�
4�

�k2

�� �(1 + �)�2(1� �)

�(1� 2�)

(
ln(1� x)

�
+ 2 Li2(1� x)�

�2

3

+2 lnx ln(1� x) �
1

2
ln2(1� x) +O(�)

)
(A.7)

where Li2(x) is the usual dilogarithm function,

Li2(x) = �

Z x

0

ln(1� t)

t
dt : (A.8)

We note that one also needs the vector two point function with one non-covariant
denominator,

J�2;n �

Z
ddl

(2�)d
PV

 
k+
l+

!
l�

(l2 + i")((l � k)2 + i")
: (A.9)

Assuming Lorentz covariance of the momentum integral one �nds

J�2;n =

�
k� �

k2

n � k
n�
�
J2 +

k2

2n � k
n�
�
�J2;n +

1

k2
J1;n

�
(A.10)

where

J1;n =

Z
ddl

(2�)d
PV

 
k+
l+

!
1

((l � k)2 + i")
: (A.11)

It turns out that the integral J1;n always cancels out in the �nal answer.
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Figure 5: (a) Vertex correction graph (b) One parton emission (c) Two parton
emission.

A.2 Three point function

We shall only consider the special case which is needed for our purpose. We
employ the momentum assignments p2 = (p � k)2 = 0 and de�ne the boost in-
variant quantities, x = k+=p+; y = l+=p+; z = y=x = l+=k+. The corresponding
diagram is shown in Fig. 5a. One �ndsZ

ddl

(2�)d
f(l+)

(l2 + i")((l � k)2 + i")((l � p)2 + i")
=

�i

16�2k2

�
4�

�k2

��
�(1 + �)

�"Z x

0

dy f(l+) z
��(1� z)�1�� 2F1

�
1 + �; 1; 1� �;

z(1� x)

z � 1

�

+2
�2(1 � �)

�(1� 2�)
(1� x)�

Z 1

x

dy f(l+) (1� y)�1�2�

#
(A.12)

where 2F1 is the hypergeometric function. With a little work one can show that
for the special case f(l+) = 1 one recovers the normal covariant result,Z

ddl

(2�)d
1

(l2 + i")((l � k)2 + i")((l � p)2 + i")

=
i

16�2k2

�
4�

�k2

��
�(1 + �)

�2
�2(1� �)

�(1� 2�)
: (A.13)

The explicit result for the three point function with one light-cone gauge denom-
inator using the PV prescription is (we have performed a shift of the integration
variables relative to Eq. (A.12)):Z

ddl

(2�)d
PV

�
p+

l+ + p+

�
1

((l + p)2 + i")(l2 + i")((l + p0)2 + i")
=
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i

16�2k2

�
4�

�k2

��
�(1 + �)�2(1� �)

�(1� 2�)

(
1

�2
+

lnx� I0
�

+I1 � I0 lnx� 2Li2(1� x)�
1

2
ln2 x�

�2

6
+ O(�)

)
: (A.14)

The other integral which we need can be obtained from Eq. (A.14) by exchange
of p and p0Z

ddl

(2�)d
PV

�
p0+

l+ + p0+

�
1

((l + p)2 + i")(l2 + i")((l + p0)2 + i")
=

i

16�2k2

�
4�

�k2

�� �(1 + �)�2(1� �)

�(1� 2�)

(
1

�2
+

lnx� 2 ln(1 � x)� I0
�

+I1 � I0 lnx+ 2Li2(1� x)�
1

2
ln2 x+ ln2(1� x)�

5�2

6
+O(�)

)
: (A.15)

A useful relation in comparing these results with the real diagrams is

�(1 + �)�(1� �) = 1 + �2
�2

6
+ O(�4) : (A.16)

B Real integrals

In this appendix we will describe some of the integrals which occur in diagrams
involving the emission of real partons. As illustrated in Figs. 5(b,c), we will
denote the momenta of the emitted particles by p3 and p4 and the momentum
of the `observed' parton line by k. The phase space for one and two parton
emission, and keeping k2 and n � k �xed, is given by (we set pn � 1 in the
following)

PS(1) =

Z
ddp3

(2�)d�1
Æ+(p23)Z

ddk Æ(x � n � k) Æ(jk2j+ (p� p3)
2)Æd(p� p3 � k) (B.1)

PS(2) =

Z
ddp3

(2�)d�1
Æ+(p23)

Z
ddp4

(2�)d�1
Æ+(p24)Z

ddk Æ(x� n � k) Æ(jk2j+ (p � p3 � p4)
2)Æd(p� p3 � p4 � k) :

(B.2)
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Integrating over irrelevant angles in d dimensions we have for the transverse
phase space,

Z
dd�2kT =

�
1

2
��

�( 1
2
� �)

Z
dk2T k�2�T

Z �

0

d�1 sin
�2� �1 : (B.3)

If the integrand is independent of �1 we can integrate further to obtain

Z
dd�2kT =

�1��

�(1� �)

Z jk2j(1�x)

0

dk2T k�2�T : (B.4)

B.1 Crossed ladder diagrams: topology b

Here we shall describe the integrals needed for the evaluation of the crossed
ladder diagram (topology b) as shown in Fig. 6. We introduce a notation for
the real parton momenta such that,

p�3 = z1p
� +

t
2

1

2z1
n� � t1

�

p�4 = z2p
� +

t
2

2

2z2
n� � t2

� (B.5)

with transverse momenta t1, t2. In terms of these variables the denominators
which occur in the diagram in Fig. 6 can be written as

p21 = �
t1

2

z1
; p22 = �

t2
2

z2
; k2 = (p� p3� p4)

2 = �a1t1
2� a2t2

2� 2t1 � t2 (B.6)

where

a1 =
(1 � z2)

z1
; a2 =

(1� z1)

z2
: (B.7)

The general form of the matrix element which has to be integrated over the
phase space of Eq. (B.2) is

A(z1; z2) +B(z1; z2)
t1 � t2
t2
1

+ C(z1; z2)
t1 � t2
t2
2

+D(z1; z2)
(t1 � t2)2

t2
1
t2
2

: (B.8)

The integrations over t1 and t2 are �nite at small transverse momenta, so that
before the k2 integration the expression is �nite. Introducing the constants

F =
(4�)�

16�2�(1� �)

f =
�1��

�(1� �)
(B.9)
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Figure 6: An example of the graph of topology (b)

we have in the frame speci�ed by Eq. (B.5):

PS(2) = F 2

Z
dz1
z1

dz2
z2

Æ(1 � x� z1 � z2)
dd�2t1

f

dd�2t2
f

Æ

 
jk2j = a1t1

2 + a2t2
2 + 2t1 � t2

!
: (B.10)

Since the integrals over the transverse momenta are �nite we may take the limit
d! 4. The values of the integrals for the integrands which occur in Eq. (B.8)
and the phase space weight given in Eq. (B.10) are collected in Table B.1. The
remaining one dimensional integrals are easily performed.

B.2 Real diagrams: topology cd

The calculation of the topology (b) graphs was facilitated by the fact that before
integration over k2 the kernel was �nite. The situation is more complicated for
topology (cd), which has two cuts involving either one or two real partons. The
cut with two real partons (gluons) is shown in Fig. 7 which also shows the
de�nition of the kinematics.
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Integrand Integral in units of F 2 jk
2j
x

R
dz1dz2 Æ(1� z1 � z2 � x)�(z1)�(z2)

< 1 > 1

< t1:t2
t
2

1

> � z1
1�z2

< t1:t2
t
2

2

> � z2
1�z1

< (t1:t2)
2

t
2

1
t
2

2

>
h
1 + 1

2

x
z1z2

ln
�

x
(1�z1)(1�z2)

� i

Table 5: Real integrals for crossed ladders

We perform a light-cone decomposition of the light-like momenta p3 and p4:

p�3 = (1� z)p� +
t
2

1

2(1� z)
n� � t1

�

p�4 = z(1� y)p� +
t
2

2

2z(1� y)
n� � t2

� (B.11)

where zy = x. It is expedient to perform a change of variables,

t1 !

r
1� z

1� y
r1

t2 !

r
1� y

1� z

�
r2 � (1� z)r1

�
; (B.12)

so that p3 and p4 become

p�3 = (1� z)p� +
r
2

1

2(1� y)
n� �

r
1� z

1� y
r1

� (B.13)

p�4 = z(1� y)p� +
(r2 � (1� z)r1)

2

2z(1� z)
n� �

r
1� y

1� z
(r2

� � (1� z)r1
�) :

With this choice the propagators of the diagram in Fig. 7 can be written as

jk2j = �(p � p3 � p4)
2 =

r
2

1
y

(1� y)
+

r
2

2

(1� z)
(B.14)

jp21j = �(p � p3)
2 =

r
2

1

1� y
(B.15)
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Figure 7: An example of the graph of topology (cd)

jp22j = (p3 + p4)2 =
r
2

1
+ r

2

2
� 2r1 � r2
z

(B.16)

n � p3 = 1� z; n � p4 = z(1� y) : (B.17)

Hence we have that in this frame,

PS(2) = F 2

Z
dz

(1� z)

dy

(1 � y)
Æ(x� yz)

dd�2r1
f

dd�2r2
f

Æ

 
jk2j =

r
2

1
y

(1� y)
+

r
2

2

(1� z)

!
: (B.18)

If we are integrating over quantities which do not depend on angles we may
write Eq. (B.18) in the form

PS(2) = F 2 jk2j1�2�
Z 1

x

dz

x

 
x

(1� z)(z � x)

!� Z 1

0
d! !��(1� !)�� (B.19)

where the rescaled transverse momentum ! is de�ned as

jp21j =
r
2

1

(1� y)
=

!zjk2j

x
: (B.20)

The results for the integrals are given in Table 6.
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Integrand Value of integral in units of F 2jk2j�2��
2(1��)

�(1�2�)

< 1 > jk2j
1�2�

R 1
x

dz
x

�
x

(1�z)(z�x)

��

< 1
jp2
1
j
> �1

�

R 1
x

dz
z

�
x

(1�z)(z�x)

��

< 1
jp2
2
j
> �1

�

R 1
x

dz
(1�x)

�
x

(1�z)(z�x)

��

< 1
jp2
1
jjp2

2
j
> �2

�
1
jk2j

R 1
x

dz
(1�z)1+2�

�
1 + � ln

�
z(1�x)
z�x

�
+ �2 �

2

6 + O
�
�2(1� z)

� �

Table 6: Real integrals

We note at this point that Eq. (B.19) is also suitable for dealing with a
light-cone gauge denominator term like 1=(n � p3) in the matrix element. For
instance, we obtain

<
1

n � p3
>= F 2jk2j1�2�

1

x

Z 1

x

dzPV

 
1

1� z

!
= F 2jk2j1�2�

1

x
(I0 + ln(1� x))

(B.21)
where I0 is as de�ned in Eq. (42).

If we have a denominator which depends on the angle between r1 and r2,
the integral is more complicated. For example when we have the denominator
as given by Eq. (B.16) the angular integration splits into two regions, r2

1
> r

2

2

and r
2

2
> r

2

1
:

<
1

jp22j
>= F 2 jk2j�2�

Z 1

x

dz

(1� z)

z

x

 
x

(1� z)(z � x)

!�

I(�) (B.22)

I(�) =

(Z 1
1+�

0

d! !��(1� !)�1��2F1(1; 1 + �; 1� �;
�!

1� !
)

+
1

�

Z 1

1
1+�

d! !�1��(1� !)��2F1(1; 1 + �; 1� �;
1� !

�!
)

)
(B.23)

where

� =
(z � x)

x(1� z)
: (B.24)
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Now by rede�nition of variables the two integrals give

I(�) = J(�) +
1

�
J(

1

�
) (B.25)

where

J(�) = ���
Z 1

0

dvv��(1 + �v)�1+2�2F1(1; 1 + �; 1� �; v)

� �
1

2�
���(1 + �)�1+2�2F1(1;�2�; 1� �;

�

1 + �
) : (B.26)

Hence combining using the identity,

2F1(1;�2�; 1� �; z) + 2F1(1;�2�; 1� �; 1� z) = 2
�2(1� �)

�(1� 2�)
z�(1� z)� (B.27)

one obtains

I(�) = �
1

�

�2(1� �)

�(1� 2�)

1

1 + �
: (B.28)

Thus the �nal result is as given in Table 6. This result can be obtained much
more easily by performing a shift of the transverse momenta so that jp22j only
depends on a single transverse momentum.

If we now add a second denominator such a shift is no longer useful. The
scalar integral with two denominators is given by a simple modi�cation of
Eq. (B.22),

<
1

jp21jjp
2
2j
> = F 2 jk2j�1�2�

Z 1

x

dz

(1� z)1+2�(
���

Z 1
1+�

0
d! !�1��(1� !)�1��2F1(1; 1 + �; 1� �;

�!

1� !
)

+��1��
Z 1

1
1+�

d! !�2��(1� !)��2F1(1; 1 + �; 1� �;
1� !

�!
)

)

(B.29)

where � is as given in Eq. (B.24). By change of variables this integral may be
further written as

<
1

jp21jjp
2
2j
> = F 2 jk2j�1�2�

Z 1

x

dz

(1� z)1+2�
K(�) (B.30)

where

K(�) =

(Z 1

0

dv v�(1+�)
� v
�
+ 1
�2�

2F1(1; 1 + �; 1� �; v)

+

Z 1

0

dv v��
� 1
�
+ v
�2�

2F1(1; 1 + �; 1� �; v)

)
: (B.31)
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The partial result for K(�) which is suÆcient for our purposes is

K(�) = �
2

�

�2(1� �)

�(1� 2�)

�
1 + � ln

�
z(1 � x)

z � x

�
+ �2

�2

6
+O

�
�2(1 � z)

��
: (B.32)

So the �nal result for the integral is as given in Table 6.
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